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1. Introduction. Let A = (aij) be an n X n real or complex nonsingular matrix 
with aii $ 0 and let b be a given column vector. If we put A = D + Q, where D 
is a diagonal matrix with dii = aii and Q A - D, then one of the simplest and 
oldest iterative methods for the solution of equation 

(i) Ax=b 

is the Jacobi or simultaneous displacements method according to which the iterants 
x(m+1) are determined by 

(ii) ajixi(m+l) aiix (in) +bi 1 _ i?n, m Q , 

or, in matrix form, by 

(iii) Dx(nll) - Qx() + b, 

where x(?) is an arbitrary initial approximation to the exact solution x* of (i). If 
e(m) denotes the error vector e(m) x(m) -x*, then from (iii) we derive 

(iv) e(m+1) = Je(m) = ... = Jmn+le(o) 

where J -D-'Q is the Jacobi iteration matrix associated with A. It is known that 
the Jacobi method converges rather slowly. The standard technique of improving 
its convergence is that of extrapolation or relaxation which in our case leads to the 
extrapolated Jacobi or simultaneous displacement method 

(v) DX(m+l) = _I(c - 1)D + wQ}x(m) + cb 

with the extrapolated Jacobi matrix given by 

(vi) Jw -- (co - 1) + c D-1Q}, 

where X is the relaxation parameter which is a real number. It is known [171 that 
for an arbitrary x(?) the error vectors e(m?+) of these iterative methods tend to the 
zero vector if and only if the Jm+1 tend to the zero matrix, or equivalently, if and 
only if the spectral radius r(J.) (-max,5i<n I Xs(J,,) , ) of J. is less than unity. 

However, since the evaluation of the eigenvalues of a general matrix is very com- 
plicated, it is difficult to guarantee in advance that the convergence conditions will 
be satisfied, and theoretical results for the Jacobi and extrapolated Jacobi methods, 
in spite of their being long in existence, are available only for very special classes 
of matrices. Furthermore, almost all of these results give only sufficient conditions 
for convergence. Thus, if the matrix A is strictly diagonally dominant,' von Mises 

Received June 15, 1964. 
1 For the precise definitions of various concepts used in the Introduction, see the succeed- 

ing sections of this paper. 
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and Geiringer [8] proved that the Jaboci method is convergent (see also Witt- 
meyer [21] and Collatz [1]). Later, Geiringer [5] proved that both the Jacobi and 
Gauss-Seidel methods are convergent for irreducibly diagonally dominant1 matrices 
A. Similar results were obtained by Collatz [2], Weissinger [19], and others.2 If A is 
symmetric and possesses the property A,1 Young [22] showed that the Jacobi method 
converges if and only if A is positive definite while Stein and Rosenberg [14] proved 
its convergence in the case in which A is a real symmetric positive definlite matrix 
with nonpositive off-diagonal entries. Only recently3 Householder [6] (see also 
Gavrilov [4], Wegner [18], and Newman [9]) showed that if A = I + Q is sym- 
metric then (iii) converges if and only if (I + Q) and (I - Q) are positive definite. 
Furthermore, Ostrowski [10], using a very complicated finite matrix theory, was 
able to derive both necessary and sufficient conditions for the convergence of (iii) 
for the class of the so-called real H-matrices A as well as other important results 
concerning free steering methods, variable parameter c, etc. An analogue to the ex- 
trapolated method was investigated by Keller [7]. 

The purpose of this article is first to characterize and establish various proper- 
ties of a class of K-symmetric and K-positive definite matrices 3X. and then by sim- 
ple arguments to derive both the necessary and sufficient conditions for the con- 
vergence of the generalized extrapolated Jacobi method for A in 31Cn7 of which the or- 
dinary and extrapolated Jacobi methods become just special cases. Afterwards, we 
establish the connection between the conditions of the above authors and ours for 
the matrices of class X. and investigate the problem of determining the optimum 
parameter X of the extrapolated process. In contradistinction to the procedures 
used by the above authors which essentially are restricted to matrices of finite 
order our procedures appear to be free of this restriction. Accordingly, the last sec- 
tion of the article deals with the extension of the results to operator equations in 
Hilbert space. 

Let us point out that though the results derived in this article are mostly theo- 
retical in nature, it is hoped that they will also prove to be of practical interest. 
We shall consider this aspect of the above results as well as other applications 
elsewhere. 

2. K-symmetric and K-positive definite matrices. Let Xn be a real or complex 
n-dimensioinal linear vector space with inner product and norm defined by 

(1) x y (x, y), I x = (x, x)"12 

where x =(x1, * , xn) is the adjoint of the columnr vector x. 
Definition 1.4 An n X n real or complex matrix A = (aij) will be called K-sym- 

metric if there is at least one n X n Hermitian and positive definite matrix K such 

2 For the extensive treatment of various other contributions of these and other authors 
(especially the earlier ones) to the investigation of these and related iterative methods see the 
excellent monographs by Varga [17} and by Forsythe and Wasow [3]. 

3The author is grateful to the referee for various suggestions concerning this paper and 
particularly for calling his attention to some of the papers on this subject. 

I For the properties of bounded and unbounded K-p.d. operators in Hilbert space H see 
Petryshyn [12], [13]. 
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that for all x and y in Xn 

(2) (Ax, Ky) = (Kx, Ay) 

and K-positive definite (K-p.d.) if for all x X 0 in X. 

(3) (Ax, Kx) > 0. 

It is easy to show that (2) is equivalent to the condition 

(2o) KA A*K 

while (3) is equivalent to the requirement that KA be positive definite, written 

(3o) KA >0. 

The class of all real or complex n X n matrices A which have properties (2) and 
(3) will be denoted by Cn . The following theoremi gives a convenient characteriza- 
tion of 3Cn 

THEOREM 1. The following statementts characterizing A in JCX, are equivalent: 
(a) A is K-symmetric and K-p.d. 
(b) A has positive real eigentvlues and a complete set of corresponding eigenvectors. 
(c) A is weakly positive in the sense of lligner [20]. 
(d) A can be written in the form A = H1H2, where H1 and H2 are two Hermitian 

and positive definite matrices. 
Proof. We shall prove Theorem 1 by showing that 

(a) =>(b) =>(c) =~(d) ,= (a). 

(a) => (b): Let A be K-syimmetric and K-p.d. Then, by Definition 1, there 
exists a Hermitian positive definite matrix K such that T KA is Hermitian and 
positive definite. Hence A - K1T and therefore, as is known, has the properties 
of (b). 

(b) =w (c): Let A have positive eigenvalues and a colm-lplete set of corresponding 
eigenvectors. Then A is similar to a diagonal matrix D, i.e., there exists a nonsingu- 
lar matrix W and a diagonal matrix D wvhose diagonal elenments are the positive 
eigenvalues of A which satisfy A = WVDW1. Hence A is weakly positive in the sense 
of Wigner [20]. 

(c) =X (d): Let A be weakly positive. Then there is a nonsingular matrix W 
and a positive diagonal matrix D such that A W DIVD1. If we define H1 and H2 
by HI _= I W* and H2 (W*)-' D141, then it is easy to verify that H1 and H2 
are Hermitian anid positive definite and that A = HA12 . 

(d) == (a): Assuming A to be of the form A = H1H2 with H1 and H2 Hermitian 
and positive definite Nwe see that when we let K H1i', then KA = A*K and 
KA = H2 > 0. Hence, by Definition 1 or its equivalent, A is K-symmetric and 
K-p.d. This completes the proof of Theorem 1. 

Remark 1. Let us observe that when the mnatrices A and B belong to X. then 
in general their sunm A + B does not necessarily belong to 3C, . For example, it is 
easy to verify that the 2 X 2 matrices 

(El) A1=[V flX A2=[ 1j 8 
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belong to 3(2 while their sum 

Al +A2 =[~ 
[ 8 2- 

does not. Of course, a sufficient condition for the matrix aA + bB to belong to 'W 
whenever A and B belong to RCn and a > 0 and b > 0, is that there is at least one 
common K with respect to which both A and B are K-symmetric and K-p.d. That 
this is not a necessary condition we see from the following example: The matrices 

(E2) A3 =[2 1f A4 [3 1f 
belong to XC2 but there does not exist a common K with respect to which both A3 
and A4 would be K-symmetric and K-p.d. For if there were such a K, say, 

K= [all a121 
La12 a22] 

with an > 0, a22 > 0, and a11a22 - al2 > 0, then it would have to satisfy the con- 
ditions (2o) and (3o) which in our case reduce to the requirement that 

3a1 - 2a22 = 2a11 - 3a22. 

The latter implies that a,, = - a22. This is, however, impossible if K is to be a 
positive definite matrix. Nevertheless, the sum 

F16 s A3+ A4 = 52 
[ 5 2 ] 

does belong to Kf2 with K = I, where I is the 2 X 2 identity matrix. 
Remark 2. Let us also note that when A belongs to KfCn then A-' exists and be- 

longs to Kn . This follows from Theorem 1(b). 
For later use we shall need the following lemma. 
LEMMA 1. Let N and M be n X n real or complex matrices which are K-symmetric 

and let N be also K-p.d. Then the eivenvalues of 

(a) Mu = XNu 

are real, the eigenvectors ui and uj corresponding to distinct eigenvalues Xi and Xj are 
orthogonal in the sense that 

(A) (Nu,, Kuj) = 0, 

and the set of eigenvectors { ui} corresponding to the eigenvalues { X,i of (a) is complete in, 
Xn & 

Proof. The proof of Lemma 1 can be carried out directly or by means of the 
following device. Evidently, the eigenvalue problem (a) is equivalent to the prob- 
lem 

(ao) Tu = Xu, 

where T N-1M. If now in Xn we introduce the new inner product and the cor- 
responding equivalent norm by 

(,Y) [x, y] = (Nx, Ky), lx = [x, X]1"2 x,y E XnX 
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then it is easy to show that relative to the inner product ('y) the matrix T is Her- 
mitian. Consequently, by the known results for Hermitian matrices, the eigenvalues 
of T are real, the eigenvectors ui and uj corresponding to two distinct eigenvalues 
Xi and Xj are orthogonal in the (-y)-metric, and the set of eigenvectors {uil corre- 
sponding to the eigenvalues {XJi is complete in the (y)-norm and hence, in view of 
norm equivalence, in the X.-norm. These are precisely the assertions of Lemma 1. 

3. The Generalized Extrapolated Jacobi Method. Consider the problem of 
solving the matrix equation 

(4) Ax = b, 

where b is a given column vector and A is a nonsingular n X n real or complex 
matrix of the form 

(5) A = D + Q 

in which D is a K-symmetric and K-p.d. matrix and Q is K-symmetric. Let x0 be 
an arbitrary initial approximation to the solution x* of (4) and let w be a real 
parameter. In analogy to (v) we determine the succeeding iterants xl, x2, **, 

Xn+ , by 

(6) Dx+1 = -{(co - 1)D + coQ}xn + cob 

which we shall call the generalized extrapolated Jacobi method. Observe that D is not 
assumed to be a diagonal matrix. Evidently, the ordinary Jacobi and extrapolated 
Jacobi method, as well as other methods, are special cases of (6) for special choices 
of D, Q, and c. The corresponding iteration matrix J., is given by 

(7) J -, -{(co-1) + coD-1Q} 
and is called the generalized extrapolated Jacobi matrix. 

THEOREM 2. The necessary and sufficient conditions for the convergence of the 
generalized extrapolated Jacobi method (6) is that both matrices A = D + Q and 
G ((2 - w)/c.))D - Q (or -A and -G,) be K-p.d. for some nonempty set Q (or 
go) of co. 

Proof. (Sufficiency): Let us define the matrix P. by P. -{ (w - 1)D + cwQI 

and observe that, in view of the K-symmetry of D and Q, G. and P. are also K- 
symmetric. Furthermore, this and the definitions of G. and P. imply that for every 
vector z in Xn we have the identity 

(8) W2(G,,,z, Kz) (Az, Kz) = (Dz, Kz)2 - (P,z, Kz) 2. 

To see this note that, in view of (5) and the definition of G, and P,, we have 

co2(,G z, Kz) (A.z, Kz) = ([(2 -w)D - coQ]z, Kz) ([coD + wQ]z, Kz) 

= ([D- P,]z, Kz) ([D + P,]z, Kz) 

from which (8) follows. Assume inow that A and G. (or -A and -G.) are both 
K-p.d. for co E C (or Q?) and let k,, X (co) be an arbitrary eigenvalue of J. and u 
its corresponding eigenvector. Then Je,u = X\,u or, in view of (7) and the definition 
of P., P,u = X,,,Du. Since D is k-symmetric and K-p.d. and P. is K-symmetric, 
Lemnma 1 implies that X,,, is real. Hence (P,u, Ku)2 = X,2(Du, KU)2 and, by (8), 

(9) co2(G,,u, Ku) (Au, Ku) = (Du, Ku)2[1 - 
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Since, by assumption, A and G. (or -A and -G,,) are both K-p.d., (9) impnlcs 
that I A,I < 1. Consequently, the method (6) converges. 

(Necessity): Let us first note that in virtue of the properties of D and P",, 
Lemma 1 implies that all the eigenvalues Xj(wo) of J. are real and the corresponding 
set of eigenvectors {ui} forms a complete set in Xn which we can assume to be 
orthogonal in the sense that whenever i F j 

(10) (Du ,Kuj) = 0. 

Let z be an arbitrary vector in Xn . Then there are scalars ai such that 
n 

Z= aiui 

and, in view of (10), 
n: 

(11) (Dz, Kz) = ai |2(Dui, Kui). 

Similarly, since PXui = XiDui, 
n 

(12) (P,z, Kz) = Xi I ai I2(Dui , Kui). 

If we define 

(13) max I Xi() , 
1 , i ? n 

then from (12) and (11) we see that for every z in Xn 
n 

{ (P,,,z, Kz) I < X(@o) S2 ai 12(Dui, Kui) = X(@) (Dz, Kz). 

This inequality and the identity (8) show that for every z in Xn 

c2(G,,,z, Kz) (Az, Iz) > (Dz, Kz)2[1- 

Assuming now that (cw) < 1, the last inequality shows that A and G. (or -A and 
- G,) are both K-p.d.; this completes the proof of Theorem 2. 

Determination of the Sets Q and Q?. Let {.ti}, i = 1, 2, , n, be the set of eigen- 
values of J, =-D 'Q, and let {vi} he the corresponding set of eigenvectors. Then 
Qv = -iDv and for any vector z in Xn 

n 

(14) (Az, Kz) = Z (1 - i 12(Dvi, Kvi) 

and 

(15) (G,K) E,Z (2- z + i Jai I2(Dvi, Kvi). 

Since D is K-p.d., (14) and (15) imply that A and G. are K-p.d. if and only if 

(16) 1-pi > ?, + Ai > 0, i 1, 2, n, 



JACOBI METHOD IN SOLUTION OF MATRIX AND OPERATOR EQUATIONS 43 

respectively. Furthermore, in view of the fact that A, G., and D are K-p.d. and 
(Az, Kz) + (GXz, Kz) = 2(Dz, Kz)/co, Co must be positive and hence, by (16), must 
lie in the set Q determined by 

(17) 0<co< - 1 - Mm 

where Mm is the algebraically smallest eigenvalue of J1 = -D1Q. 
On the other hand, if D is K-p.d., then -A and -C, are K-p.d. if and only if 

(18) -s < 0, < 0 i = 1, 2 .. n 
co 

respectively. By similar reasoning we find that in this case co must be negative and, 
by (18), must lie in the set Q? determined by 

(19) 1c2 < 
1- MM 

where Mm is the algebraically largest eigenvalue of Ji . 
Remark 3. Let us remark that Theorem 2 remains valid if instead of D we as- 

sume that -D is K-p.d. As above, we again have to distinguish two cases. In the 
first case -A and -G. are K-p.d. if and only if Ai < 1 and 0 < o < 2/(1 - Mm) 

while in the second case A and G. are K-p.d. if and only if 

2 
1 < Mii and ( M < co < 0. 

(1 A M 

COROLLARY 1. The generalized Jacobi method (X = 1): 

(20) Dxn.1- -Qxn + b 

converges if and only if A = D + Q and G, = D - Q are K-p.d. 
Special Cases. Let us observe that by specializing D, Q, and co we get from (6) 

and (20) different iterative procedures. Of course, in each case, D and Q have to 
satisfy the above conditions. In particular, if aii > 0 for all i and D is chosen to be 
the diagonal matrix with d = a which is K-symmetric, then (20) and (6) reduce 
to the ordinary Jacobi and extrapolated Jacobi methods, respectively. We shall not 
dwell here on other procedures. However, we will mention one important special 
case. 

COROLLARY 2. (a) If A is Hermitian with aii > 0 and D is a diagonal matrix 
with dii = aii, then the extrapolated Jacobi method converges if and only if 

A=D+Q>0 and G.=' DD-Q>0 
co 

or A <0 and G. < 0. 
(b) In particular, Jacobi method converges if and ontly if the matrices A = D + Q 

and G1 = D - Q are both positive definite. 
Let us note3 that Corollary 2(b) was proved by Householder [6] for the case 

D = I. In [4] Gavrilov derived equivalent necessary and sufficient conditions for 
the validity of Corollary 2(b). 

Example. To exhibit our simple necessary and sufficient conditions for the con- 
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vergence of ordinary Jacobi method consider the following example of a symmetric 
matrix Ao discussed by Forsythe and Wasow [3]: 

[ia a 
(E3) Ao= a 1 a 

La a 1 

where a is a real number. Using the fact that Ao > 0 if and only if its principal 
minors are positive, it is readily verified that Ao > 0 when - 2 < a < 1; however, 
the Jacobi method converges only if < a < 2 since, as was observed in [3], 
i= -2a and X2 = 3 = a, being the eigenvalues of the Jacobi iteration matrix 

J, are in absolute value less than unity only for-2 <a < 2. 

If in addition to Ao > 0 we demand, in accordance with Corollary 2, that 
G, = D - Q > 0, then it is easy to verify that G1 > 0 when -1 < a < . Thus, 
A0 > 0 and G1 > 0 together if and only if - 2 < a < 2. This verifies the condition 
on a obtained in [3] by explicitly computing the eigenvalues of J. 

Remark 4. It should be remarked that Theorem 2 is essentially a special case 
of a more general Theorem A proved by the author [11] for operators in Hilbert 
space which for the space X,, can be formulated as follows: 

THEOREM A. Let D be a real or complex n X n K-symmetric matrix and let A be 
the matrix of the form A = D + S + Q. If S* denotes the ad joint olf S and Q the set 
of real numbers co > 0 such that the matrices D, X, and Q have the properties that 
(D + wS) is nonsingular and G(o) _ ((2 - w)/o)D + S* - Q is K-symmetric 
and K-p.d. for X in Q, then the sequence {x,+l} determined by the go-method, 

(j) (D + CWS)xn+l = -{ (w - 1)D + coQxn} + &b 

converges to the solution x* of Ax = b if and only if A is K-p.d. 
A closer examination reveals that the identities (9) and (10) derived in [11], 

on which Theorem A is based, remain valid when S = 0. Thus, in this case the 
go-method (j) reduces to the generalized extrapolated method (6) and Theorem 
A reduces to a theorem analogous to Theorem 2. However, it was to avoid the use 
of these identities, whose proof is rather involved and complicated, that for the 
matrices of class 3Tn we presented here a simple proof of Theorem 2. 

4. Connection Between Our and Other Conditions for A E 3CX. 

(A) Strictly or Irreducibly Diagonally Dominant Matrices. Let us recall [17] that 
the matrix A is called diagonally dominant if 

(21) j as ? > j aii 

for all i, strictly diagonally dominant if ">" holds in (21) for all i, and irreducibly 
diagonally dominant if A is irreducible and ">" holds in (21) for at least one i, 
where we say that A is irreducible if by no interchange of rows and of corresponding 
eQIumns is, it tosib1e to reduce A to the forna 

All A12 
_0 A22_ 
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in which All and A22 are square submatrices or, equivalently, if there does not exist 
a permutation matrix P such that the matrix PAP-1 has the above form. The ex- 
ample (E3) for a in the interval -2 < a < 2 suggests that the strict diagonal 
dominance of Ao implies our conditions: A > 0 and G6 > 0. In fact, Theorem 3 be- 
low shows that this is the case for a general strictly or irreducibly diagonally domi- 
nant K-symmetric matrix A. 

THEOREM 3. If A is K-symmetric and strictly or irreducibly diagonally dominant 
with real positive diagonal elements and D is the diagonal matrix with dii = aii which 
is also K-symmetric, then A = D + Q and G = D - Q are both K-p.d. 

Proof. Let us first note that the K-symmetry of A and D implies the K-sym- 
metry of G, . Furthermore, if A = D + Q is strictly or irreducibly diagonally domi- 
nant, then 

ri- ai I< ai 

and, consequently, G, = D - Q is also strictly or irreducibly diagonally dominant. 
Hence Gershgorin's principle and irreducibility imply that both A and G1 are non- 
singular [15]. Since ass > 0, the. union of the disks I z - a ? ri contains only 
points in the complex plane z having their real parts positive. Hence, all the eigen- 
values of A and of G6 have positive real parts since, by Gershgorin's principle, they 
must lie in the union of these disks. But, being real, they are therefore positive. 
Finally, Theorem 1 implies that both A and G0 are K-p.d. 

Incidentally, as fan immediate consequence of Theorem 3 we obtain the following 
generalization of the known result for Hermitian matrices [17]. 

COROLLARY 3. if A = (aii) is a K-symmetric strictly or irreducibly diagonally 
dominant matrix with positive real diagonal elements a,,, then A is K-p.d. 

(B) Two-Cyclic Matrices. Another 'sufficient condition for the convergence of 
the Jacobi method was derived by Young [22] for real symnmetric and positive defi- 
nite matrices A with the so-called "property A." In general we say that a given 
n X n matrix A = (aij) has property A or equivalently is cyclic of order 2 [17] if 
there exists an n X n permutation matrix P such that 

(22) 1 ~pAT -FDi, - Q121 _Di, O1+ 0 - Q121 
L-Q21 D22 J 0 D22 L -Q21 0 J' 

where Di, and D22 are square diagonal matrices of order p and r = n - p, respec- 
tively. Let us note that P permutes the diagonal elements of A among themselves. 
Observe that if A is K-symmetric and we define a new Hermitian and positive defi- 
nite matrix 1K by 

r Kil K* 
(23) K-PKPT = LK 12 

K2]J 

where the partition of K corresponds to that of A, then it is not hard to verify 
that A is K-symmetric if and only if A is K-symmetric and A is K-p.d. if and only 
if A is K-p.d. Hence, without loss of generality, we may assume that A is of the 
form (22), i.e., that A is a 2-cyclic matrix, and take K to be in the corresponding 
partitioned form (23). Furthermore, to simplify the discussion, we shall assume 
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that K is of the form 

(24) K [Kl 0] 

and that the matrix 

Fi, 01 
(25) D= L0 D22 

is K-symmetric. Under these conditions the following theorem establishes the con- 
nection between our conditions and those of Young [22] for the matrices of class 
Cn . 

THEOREM 4. If A is 2-cyclic and K-symmetric, where K is of the form (24), then 
A = D + Q is K-p.d. if and onlyif a D - Q is K-p.d., where 

Q [ Q21 012] 

Proof. Let us first observe that our conditions on A and D imply that G is K- 
symmetric. Let u be any vector in X1, and, corresponding to the partition of A, 
let u be partitioned into its p- and r-dimensional components ul and u2, respec- 
tively, so that 

U [=j. 
U2 

A simple calculation shows that the quadratic form (Gu, Ku) is given by 

(26) (Cu, Ku) = (Du, Ku) + (Q12u2, Kjuj) + (Q21u%, K22u2). 

Consider the matrix 

(27) E= 21 21] 

where I, and I2 are the p- and r-dimensional identities, respectively, and then 
consider the transformation of variables 

I = UilF I 12 U U 
(28) u u2 J -I2 u2l [-u2i 

It is not hard to see that the quadratic form (Au', Ku') is given by 

(29) (Au', Ku') = (Du, Ku) + (Q12u2, Kiiul) + (Q2jui, K22u2). 

Since E is a nonsingular matrix the identities (26) and (29) imply the validity of 
Theorem 4. 

COROLLARY 4. If A is 2-cyclic and symmetric, then A = D + Q is positive definite 
if and only if G = D - Q is positive definite. 

(C) Real M-Matrices. Following the notation of Varga [17] we shall say that 
a real n X n matrix A = (aii) with aij- 0 for all i # j is an M-matrix if A is 
nonsingular and A-1 > 0, where " > " means that all the entries rij of A1 are 
non-negative real numbers. The following theorem establishes for, A in X. the 
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relationship between our conditions and those of an M-matrix and exhibits also a 
loose connection with some of the results of Stein and Rosenberg [14]. 

THEOREM 5. Let A = (aij) be a real K-symmetric matrix with ai <? 0 for all 
i $ j and such that the diagonal matrix D with dii = aii is also K-symmetric. Then A 
is an MI-matrix if and only if A = D + Q and G = D - Q are both K-p.d. 

Proof. The proof of Theorem 5 is essentially based on Corollary 1 above and 
Theorem 3.10 in [17] according to which A is an M-matrix if and only if the diag- 
onal entries of A are positive real numbers and J = - D-1Q is a convergent matrix 
with non-negative entries (i.e., J > 0 and jk converges to zero matrix when 
k co). 

To prove Theorem 5 let us first observe that, by virtue of our conditions on 
A and D, G is also K-symmetric. 

If we assume now that A is an M-matrix, then by Theorem 3.10 [17] the diagonal 
entries of A are real positive numbers and the Jacobi matrix J = -D-'Q is a con- 
vergent matrix with non-negative entries. Hence, by Corollary 1, both A and G 
are K-p.d. 

To prove the converse, suppose that A and G are K-p.d. Then it follows that 
D is K-p.d. and, by assumptioti, also K-symmetric. Hence D is nonsingular and 
belongs to the class 3n . Consequently, by Theorem 1, the eigenvalues xi of D are 
positive real numbers. Since D is a diagonal matrix, Xi = d = aii > 0. Thus, the 
entries of the Jacobi matrix J = -D-'Q are non-negative and, by Corollary 1, 
J is convergent. Consequently, by Theorem 3.10 [17], A is an M-matrix. 

Let us note that if in Theorem 5 we have D = I, then J = -Q is the Jacobi 
matrix with non-negative real entries considered by Stein and Rosenberg [14]. If 
Gs denotes the Gauss-Seidel matrix (I - L)-'U, where L and U are, respectively, 
the strictly lower and strictly upper triangular matrices such that L + U = J, 
then by Stein-Rosenberg Theorem the matrices J and Gs are either both convergent 
or both divergent. Thus, combining this result with Theorem 5 we have the corol- 
lary: 

COROLLARY 5. Let A = (aij) be a real K-symmetric matrix with aj ?< 0 for all 
i $ j and aii = 1 for all i. Then the following three statements are equivalent: 

(a) Gs is convergent, 
(b) A = I + Q and G = I - Q are K-p.d., 
(c) A is an M-matrix. 
Remark 5. Let us recall that if, in addition, A is symmetric (i.e., K = I), and 

positive definite, then it is called [17] a Stieltjes matrix and for such matrices 
Theorem 5 yields 

COROLLARY 6. If A is a Stieltjes matrix, then G = D - Q is positive definite 
and, consequently, the Jacobi method converges. 

(D) Example. Consider the following simple example of 3 X 3 real symmetric 
matrix. 

(E4) As= a 1 a1 FO 1 0 + 0 O a 
fgalJes o O s01i 

which, for a certain range of values of a and 13, is neither strictly nor irreducibly 
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diagonally dominant, nor 2-cyclic nor an M-matrix, but for which the associated 
Jacobi matrix 

O -o -A 
(30) J= D'Q= -a O -o 

_-0 -ae O 

is convergent. Using again the fact that a symmetric matrix is positive definite if 
and only if its principal minors are positive, it is easy to verify that A5 and 

1 0 0~ 0 ae 
(31) G5 [0 1 0 a a 

_? O 1 _j oe aO 

are simultaneously positive definite if and only if a and j3 are such that 

2 2~~~~~~~ (32)- -2/ <ae< +2/ 2ax-1 < <l1-2a2. 

Consequently, by Corollary 1, for any a and j3 satisfying (32) the Jacobi method 
converges. 

Observe that we would have come to the same conclusion had we computed or 
estimated the eigenvalues of J, i.e., the roots of the characteristic equation 

p(X) = - (2a2 + f2) + 2a2 = 0. 

In fact, it is not hard to show that the roots of p(X) = 0 are in absolute value less 
than 1 if a and j3 are such that for all X > 1 

(33) X3 _ (2a2 + 2) - 2a2 1I 1 > 0. 

Solving the inequality (33) we find that it holds precisely, for a and j3 satisfy condi- 
tions (32). Thus, Corollary 1 is numerically verified for this particular example. 

5. The Best Iteration Process. In this section we consider the problem of de- 
termining the value of X which gives the best convergence of the generalized extrap- 
olated Jacobi method (6). We know that if en denotes the error vector xn, - x 
then from (6) we obtain 

(34) en+ = J+ eo, 

where eo is the initial error, and 

(35) en+ - j11 eo 

Therefore, the smaller the norm 11 JX 11 of the matrix JX the faster the process (6) 
converges. Hence, our problem is to determine the value of X in Q for which 11 J,, 
is smallest. 

Observe that if, in analogy to (-y), we define in Xn the new metric by 

(36) [x, y] = (Dx, Ky), l x I = [x, x]", x, y E Xn, 

then relative to (36), the matrices Jo, and Ji are Hermitian and for any x in Xn 

(37) (1 -+ c'm) I' ? [Jx, x x] <(1 -c + C0/M) 1 x|. 
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Consequently, 

(38) E(co) = max{| -o + 11,I1 | -? + c.AM|} 

Thus our problem is to find this value X E Q at which the function E(@), which 
can be written in the form 

E(@) = I 1 - co + mt| + |1- + coM| 

+ o1 - C + Cog.m | - | - Co + WA M 

attains its minimum. 
The representation (39) implies that for co in 0 < co < 17(1- m) the function 

E(co) is given by 

E(@) = 1{2 - 2 + (#Im + I'M') + (pIm - IM)C l} 
(40) 

= (M - 1)w + 1 El(C). 

Similarly for co > 1/(1 - AM) (> 1/(1 A-m)) we obtain 

E(co) = {2co - 2 - (Apm + kIM)co + I (M - p'm)co } 
(41)2 

= (1 - I'm)CoI- 1 E2(C) 

and for co such that 1/(1- -m) < Co -< 1/(1 - UIM) the function E(co) becomes 

E(C) = 2{2( - 'M)C + I 2 - 2 - (im + IM)C c} 

(42) A1 I'm 

{ (l' U M -)CO 1 if < co < 1 - I'M 

where 

2 
(43)a2 

2 - (m+ IM 

Thus we see from (40)-(43) that in the interval (0, Co] the function E(co) is given 
by the monotonically decreasing function El(C) while in the interval (as, cia) it is 
given by the monotonically increasing function E2(C), i.e., 

744qE(w JEi(w) (#IM- 1)C + 1 forO < co < a 

= E2(CO) (1-I'm) - 1 for > w. 

The minimum of E(@) is attained at co = a and is given by 

(45) E(a) = E1(w) = E2(r) = 2 m - Im 
2 - (Ium + I'M) 

For symmetric matrices relations (43) and (45) were derived in a slightly different 
way in [3], [7] and other papers. 

Proceeding in a similar way we find that when -A and -G, are K-p.d. then 
the value co E Q? which minimizes the norm E0(Co) J, 11 of the corresponding 
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operator J^, is this point wo E Q? at which the function 

(46) EO(w) 
E {i?( (X- w+1 for wo w<O, 

EA? co)- ( 1-aMM)) -1 for X < zo, 

where 

(47) 2 2 

Thus we see from (46) that E0(w) J, 11 atthins its minimum at wo given by 

(48) E =(v) = E2=( 0) 2 m -A 
2 ( + jIm) 

The relations (44) and (46) show that E(w) and E0(w) are represented graphically 
by Figures E and E?, respectively. 

E?(w)+ E(w)2 

PMIPM I W I 

Fig. El Fig. E 

Remark 6. Let us remark that if, as is standard for matrices of finite order (see 
for example [7]), the rate of convergence R of the process (6) is defined by 

(49) R (w) -log (((c)) A(w) max Xi o()I < 1, 
1?! i ? n 

then it is known that the number of iterations necessary to reduce the initial error 
eo by a given factor is inversely proportional to R. Hence our problem in this case 
is to find an w at which R(Cw) assumes its maximum. Since R = log (1/X(X)) we 
see that the convergence is best for this value of w* for which X(w*) = min,, 5(w). 
It is interesting to observe that in our case we find, by simple manipulation, that 

c= , where a is given by (43), and 

R(w*) = ttJ(w) m= min E(w) JAM /A m 

E1n 2 - (#m + IlAM) 

We prefer, however, our approach to the problem of finding the best parameter 
since it is directly extendable to the iterative processes for solving linear operator 
equations in infinite-dimensional Hilbert spaces. 

6. Skew-K-Symmetric Matrices. In analogy to (2o) we say that a real or complex 
matrix B = (bij) is skew-K-symmetric if there exists at least one Hermitian and 
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positive definite matrix K such that 

(50) KB + B*K = 0. 

Let us remark that if we define B = iB, where i = V(-1), then B* 
and 

(51) KB-B*K = i(KB + B*K) 

from which it follows that B is skew-K-symmetric if and only if A is K-symmetric. 
This and Theorem 1 yield the validity of the following 

LEMMA 2. B is skew-K-symmetric if and only if the eigenvalues of B are pure 
imaginary and the set of corresponding eigenvectors of B span the space X. . 

If we now consider the problem of solving iteratively, by the generalized Jacobi 
method (20), the equation 

(52) Ax = b, A _ D + Q, 

where A is a nonsingular real or complex matrix for which D is K-symmetric and 
K-p.d. and Q is skew-K-symmetric, then the following theorem which is an analogue 
to Corollary 1 justifies the aprAicability of (20) to the solution of (52). 

THEOREM 6. If D is K-symmetric and K-p.d., Q is skew-K-symmetric, and A = 
D + Q nonsingular, then the generalized Jacobi method (20) converges if and only if 
the matrices - D + iQ and 0- D - iQ are both K-p.d. 

Proof. Theorem 6 follows immediately from Corollary 1 and the above remark. 
In fact, A = D + iQ and G = D - iQ are both K-symmetric and consequently, 
by Corollary 1, the eigenvalues X(J) of i= iD-i Q are in modulus less than 1 
if and only if i and 0 are both K-p.d. Since the eigenvalues X(J) of J = -D-'Q 
are such that X (J) I = I X(J) I, the assertion of Theorem 6 follows. 

Example. Let us apply Theorem 6 to the following simple example considered 
by Stein and Rosenberg [14]: A -I + Q, where 

0 
3 0 

3 
0 1 

0 0 0 
1 

(E5) Q 1 0 L? 1 001 

Q 3 i 3 - 3 i 0 1 0 . 

Evidently, Q is skew-K-symmetric for K = I. It is not hard to verify that the 
matrices A _ I + iQ and G I - iQ are both Hermitian and positive definite. 
Hence, by Theorem 6, the ordinary Jacobi method converges, thus verifying the 
assertion by Stein and Rosenberg. 

7. Extension to Linear Operator Equations in Hilbert Space. Let H be a real 
or complex Hilbert space with inner product ( , ) and norm 11 11 = ( , )1/2. A 
bounided linear operator A defined on all of H will be called K-symmetric if there 
exists a bounded linear Hermitian and positive definite operator K such that 

(53) (Ax, Ky) = (Kx, Ay), x, y E H, 

and K-p.d. if for some constant a > 0 and all x E H 

(54) (Ax, Kx) _ a 11 X 112. 
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It is known [13] that if A is K-p.d., then A-1 exists and is a bounded linear operator 
defined on its range R(A) = H. 

Let us point out that most of the results obtained in the previous sections remain 
valid in a modified form for operators A in H. In fact, the following analogues to 
Theorems 1 and 2 are true: 

THEOREM 7. The following statements are equivalent. 
(a) A is K-symmetric and K-p.d. 
(b) A can be written in the form A = H1H2 , where H1 and H2 are two Hermitian 

and positive definite operators. 
(c) A is weakly positive in the sense of Wigner, i.e., A can be expressed in the 

form A = WDW-1, where D is positive definite and W and W1 are bounded and 
defined on all of H. 

Proof. (a) => (b). Since (53) holds for all x and y in H and the operators A and 
K are bounded, it follows that KA = A*K, i.e., A*K is Hermitian. Moreover, by 
(54), A*K is also positive definite. Hence A = H1H2, where H1 = K-1 and H2 = 

A*K. 
(b) > (c). This case was shown by Wigner [20]. In fact, if A = H1H2, where 

H1 and H2 are Hermitian and positive definite, then H2 has the Hermitian 
and positive definite square root H21'2. Hence, if we define W H7112 and D 
H21/2H1H21/2, then D is Hermitian and positive definite and A = WDW-1. 

(c) ,> (a). Let A = WDW-', where D is Hermitian and positive definite and 
W and W-1 are defined on all of H. Then, since (W-1) * = (W*) 1, the operator 
(W*)-yW-l is Hermitian and positive definite and, as is easily verified, KA = 

A*K and KA is positive definite, i.e., A is K-symmetric and K-p.d. 
Let us remark that, in analogy to Remark 2, it is easy to see that if A is K-sym- 

metric and K-p.d., then so is A-1. 
Before stating a weaker version of Theorem 2 let us recall that a scalar X is said 

to belong to the resolvent set p(A) of A if X is such that the range R(X - A) = H 
and (X - A) has a continuous inverse. The set p(A) is an open set in the X-plane 
and all X not in p(A) comprise the closed set ao(A) called the spectrum of A. It is 
known [16] that when A is also Hermitian and the real numbers m(A) and M(A) 
are defined by 

(56) m(A) - inf (Ax, x), M(A) sup (Ax, x), 
I lxH1=1 Ilxl =1 

then the set or(A) is contained in the closed interval [m(A), M(A)], the endpoints 
m(A) and M(A) actually belong to a(A), and 

(57) 11 A fl = max II m(A) , M(A) II. 

In solving the functional equation 

(58) Ax = b, 

where b is a given element in H and A is a linear bounded operator in H of the form 

(59) A = D + Q, 

where D is K-symmetric and K-p.d., and Q is K-symmetric, then in analogy to (6) 
we start with an arbitrary element xo in H and determine the succeeding iterants 
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X1 X2X*X Xn+ X .. *by 

(60) Dxn+l -{(co- 1)D + wQ}xn + cb, 

or equivalently by 

(61) xn+ 1 J,xn + g, 

where g --D-'b and 

(62) J (1- (1 )D - wD-1Q. 

Let us introduce a new metric in H by means of 

(63) [x, y] = (Dx, Ky), I x = [x, X]112, x, y E H, 

and denote H with this new metric by Ho . In view of the fact that DTis K-symmetric 
and K-p.d., the new metric (63) is well defined, the new norm I x I is equivalent 
to the old 1j x jj, and, considered in Ho, the operators J1 -D-WQ and J., 
(1 - w)I + wJ1 are Hermitian. Let m and M be two real numbers such that for 
all x in H 

(64) m(Dx, Kx) (-Qx, Kx) < M(Dx, Kx), 

and let QG be the set of real numbersw such that the operator G" = (2 - w)/Wo)D 
Q is K-p.d. for each fixed X in Q 

Observe that from (61) it follows by induction that 
n 

(65) xn+- =Z J, g + J x,n+lXo 

i=0 

from which we see that the sequence of approximations {xn+1} converges to the 
solution x* of (58) for every b in H and any xo in H if the series Laio Jc' converges. 
As is well known [16], the latter converges if the spectrum a(J J) of J. lies in the 
interior of the unit circle which, of course, in our present case reduces to the interior 
of the unit interval. 

The following theorem, which as was already observed in Remark 4, is a special 
case of the Theorem in [11], is the closest analogue to Theorem 2 for general oper- 
ators in H. 

TIIEOREM 8. If D, Q, K, and the set Q satisfy the above conditions, then the spec- 
trum a (J.) lies in the interior of the unit circle if and only if the operator A is K-p.d. 

To determine the optimum parameter for the process (60) let us assume that 
I - M > 0. Then, by virtue of (64), it is easy to see that A is K-p.d., the set of 
Q of w determined by 

(66) 0 < 2 < 
2 
1m 

satisfies the conditions imposed on , and for such an X and all x in H 

(67) (1 o + - Wm) I x2 ? [J'WX, x] < (1 -w + WMI) I x 12. 

Hence, by Theorem 8, the method (60) converges and, in view of (57) and (67), 

(68) J, ? E(co) max {(1 - 1- + wtM)l, (1 - w + coAM) 11. 
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Repeating the arguments of Section 5 we find that the smallest value of E(w) is 
attained at 

(69) 2 2 
'2 -(M +m) 

and is given by 

(70) E(a) = M-m 

Thus the best iteration process (60) is attained for w given by (69) and the con- 
vergence is at least as fast as a geometric progression with ratio 

M-m 
2 -(M +m)* 

Special Case. If co = 1, then (60) reduces to the generalized Jacobi method for 
operator equations in H. 

Remark 7. As a final remark let us observe that when the extrapolated Jacobi 
method (60) is written in the form 

(71) Dx,+? = Dx. - crn 

or in the equivalent form 

(71o) Xn+1 = X- WD-'rni 

where rn Axn-b, then condition (66) indicates the range of X for which con- 
vergence of (71o) is assured and the generalized extrapolated Jacobi method written 
in the form (71o) is at least formally identical with the iterative method with relative 
minimal errors (3.6) investigated by the author in [12] if in (3.6) all t" are to take 
the same value co and B D D'. Let us add that B so chosen satisfies all the condi- 
tions specified in [12]. 

Department of Mathematics and Institute for Computer Research 
The University of Chicago 

1. L. COLLATZ, "Fehlerabschiatzung fur das Iterationsverfahren zur Aufl6sung linearer 
Gleichungssysteme," Z. Angew. Math. Mech., v. 22, 1942, p. 357-361. MR 5, 50. 

2. L. COLLATZ, "Uber die Konvergenzkriterien bei Iterationsverfahren fur lineare Glei- 
chungssysteme," Math. Z., v. 53, 1950, p. 149-161. MR 12, 361. 

3. G. W. FORSYTHE & W. R. WASOW, Finite-Difference Methods for Partial Differential 
Equations, Applied Mathematical Series, Wiley, New York, 1960. MR 23 ?B3156. 

4. YU. M. GAVRILOV, "On the convergence of iterative processes and criteria of sign-defi- 
niteness of quadratic f orms, "Izv. Akad. Nauk SSSR Ser. Mat., v. 18, 1954, p. 87-94. (Russian) 
MR 16, 177. 

5. H. GEIRINGER, "On the solution of systems of linear equations by certain iteration 
methods," Reissner Anniversary Volume, Contributions to Applied Mechanics, J. W. Edwards, 
Ann Arbor, Mich., 1948, p. 365-393. MR 10, 574. 

6. A. S. HOUSEHOLDER, On the Convergence of Matrix Iterations, Rep. ORNL-1883, Oak 
Ridge National Laboratory, Oak Ridge, Tenn., 1955. MR 17, 790. 

7. H. B. KELLER, Numerical Methods, Lecture Notes, New York University, 1961. 
8. R. VON MISES & H. POLLACZEK-GEIRINGER, "Practische Verfahren der Gleichungsauflo- 

sung, Z. Angew. Math. Mech., v. 9, 1929, p. 58-77. 
9. M. NEWMAN, "Two Theorems on Matrices," J. Res. Nat. Bur. Standards Sect. B, v. 

66B, 1962, p. 91-92. 
10. A. M. OSTROWSEI, "Determinanten mit uiberwiegender Hauptdiagonale und die ab- 

solute Konvergenz von linearen Iterationsprozessen," Comment. Math. Helv., v. 30, 1956, p. 
175-210. MR 17, 898. 



JACOBI METHOD IN SOLUTION OF MATRIX AND OPERATOR EQUATIONS 55. 

11. W. V. PETRYSHYN, "On the generalized over-relaxation method for operator equa-- 
tions," Proc. Amer. Math. Soc., v. 14, 1963, p. 917-924. 

12. W. V. PETRYSHYN, "Direct and iterative methods for the solution of linear operator 
equations in Hilbert space," Trans. Amer. Math. Soc., v. 105, 1962, p. 136-175. MR 26 #3180. 

13. W. V. PETRYSHYN, "On a class of K-p.d. and non-K-p.d. operators and operator equa-- 
tions," J. Math. Anal. Appl. (To be published.) 

14. P. STEIN & R. L. ROSENBERG, "On the solution of linear simultaneous equations by 
iteration," J. London Math. Soc., v. 23, 1948, p. 111-118. MR 10, 485. 

15. 0. TAUSSKY, "A recurring theorem on determinants," Amer. Math. Monthly, v. 56, 
1949, p. 672-676. MR 11, 307. 

16. A. E. TAYLOR, Introduction to Functional Analysis, Wiley, New York, 1958. MR 20 #5411.. 
17. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.. 

MR28 #1725. 
18. U. WEGNER, "Contributi alla teoria dei procedimenti iterativi per la risoluzione nu- 

merica dei sistemi di eguazioni lineari algebriche," Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. 
Mat. Natur. Sez. I, (8), v. 4, 1953, p. 1-48. MR 15, 66. 

19. J. WEISSINGER, "Zur Theorie und Anwendung der Iterationsverfahrens," Math. Nachr.,. 
v. 8, 1952, p. 193-212. MR 14, 478. 

20. E. P. WIGNER,"On weakly positive matrices," Canad. J. Math., v. 15,1963, p. 313-317. 
MR 26 S4188. 

21. H. WITTMEYER, "tJber die Losung von linearen Gleichungssysteme durch Iteratiou,'t 
Z. Angew. Math. Mech., v. 16, 1936, p. 301-310. 

22. D. YOUNG, "Iterative methods for solving partial difference equations of elliptic type,'" 
Trans. Amer. Math. Soc., v. 76, 1954, P. 92-111. MR 15, 562. 


	Cit r67_c72: 


